Model selection in validation sampling: An asymptotic likelihood-based LASSO approach

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic optimality of likelihood-based cross-validation.

Likelihood-based cross-validation is a statistical tool for selecting a density estimate based on n i.i.d. observations from the true density among a collection of candidate density estimators. General examples are the selection of a model indexing a maximum likelihood estimator, and the selection of a bandwidth indexing a nonparametric (e.g. kernel) density estimator. In this article, we estab...

متن کامل

Asymptotic properties of the sample mean in adaptive sequential sampling with multiple selection criteria

‎We extend the method of adaptive two-stage sequential sampling to‎‎include designs where there is more than one criteria is used in‎‎deciding on the allocation of additional sampling effort‎. ‎These‎‎criteria‎, ‎or conditions‎, ‎can be a measure of the target‎‎population‎, ‎or a measure of some related population‎. ‎We develop‎‎Murthy estimator for the design that is unbiased estimators for‎‎t...

متن کامل

Hybrid Generalized Empirical Likelihood Estimators: Instrument Selection with Adaptive Lasso

In this paper, we use the adaptive lasso estimator to choose the relevant instruments and eliminate the irrelevant instruments. The limit theory of Zou (2006) is extended from univariate iid case to heteroskedastic and non Gaussian data. Then we use the selected instruments in generalized empirical likelihood estimators (GEL). In this sense, these are called hybrid GEL. It is also shown that th...

متن کامل

On Model Selection Consistency of Lasso On Model Selection Consistency of Lasso

Sparsity or parsimony of statistical models is crucial for their proper interpretations, as in sciences and social sciences. Model selection is a commonly used method to find such models, but usually involves a computationally heavy combinatorial search. Lasso (Tibshirani, 1996) is now being used as a computationally feasible alternative to model selection. Therefore it is important to study La...

متن کامل

An Asymptotic Theory for Linear Model Selection

In the problem of selecting a linear model to approximate the true unknown regression model, some necessary and/or sufficient conditions are established for the asymptotic validity of various model selection procedures such as Akaike’s AIC, Mallows’ Cp, Shibata’s FPEλ, Schwarz’ BIC, generalized AIC, crossvalidation, and generalized cross-validation. It is found that these selection procedures c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistica Sinica

سال: 2011

ISSN: 1017-0405

DOI: 10.5705/ss.2011.029a